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Abstract—Continuous  health monitoring of industrial
pipelines, railway tracks, and powerline-like horizontal
structures is crucial for ensuring human safety. Recently, the
aerial manipulator concept is getting more attention for the
contact inspection of industrial structures. This paper proposed
the autonomous vision-based control of an aerial manipulator
for tracking of horizontal pipe structure while maintaining
continuous contact by a manipulator. The perception module of
the proposed approach includes a deep learning technique for
pipe identification in the image, a classical vision for feature
extraction, and a Kalman filter to resolve the data latency
problem in real time. The integration of LIDAR and the camera
sensor has been used to extract the cartesian coordinate of
the approximate contact point. The manipulator is designed
and developed along with inverse kinematics to maintain
continuous contact with the pipe. Image-based sliding mode
controller is used for lateral and yaw orientation control of the
aerial platform. The altitude control is done using a LIDAR
sensor. The novel forward velocity function is introduced which
serves the purpose of smooth tracking along with maintaining
a pipe in the reachable space of the manipulator. The fully
autonomous operation strategy has been designed to organize
subtasks sequentially with feedback. During the tracking of a
pipeline, the lateral position and altitude position with respect
to manipulator’s base did not deviate beyond + 0.2m. Fully
autonomous vision-based control of aerial manipulator has been
validated experimentally on a 10-meter long pipeine.

I. INTRODUCTION

The health monitoring of the industrial and commercial
infrastructure is paramount to preventing hazardous conditions.
Pipelines are one of the most commonly used infrastructures
in industries for fluid transportation. Pipelines are usually
subjected to fluid friction, high internal pressure, and extreme
environmental conditions which damage the pipeline’s interior
as well as exterior layers. The damaged pipeline surface
layers lead to explosion and leakage of the pipelines. The
continuous health monitoring of the pipelines can prevent
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leakage and emission as well as help to predict the require-
ment for maintenance and repair. The health monitoring of
pipelines includes non-contact and contact inspection. Usu-
ally, non-contact inspection methods like visual inspection
include leakage monitoring and exterior pipe layer defect
detection. Contact inspection such as Ultrasonic Testing (UT)
and electromagnetic Acoustic Technology (EMAT) are used
for leakage detection, micro-crack detection on an exterior
layer, and internal structure defect detection. Manual contact
inspection of long-range pipelines is not feasible and costs
substantial resources like time, cost, and manpower. In this
scenario, the field of robotics can provide a solution that will
be accurate, time-efficient, and cost-effective with no human
error.

To perform a contact inspection, a robot must have the ca-
pability to interact with the environment and maneuverability
over the pipelines. The wheeled or crawling robot can have
maneuverability and ability to interact with the environment
but the maneuverability is limited to the material of the
pipeline’s surface and these robots have limited speed [} [2].
The aerial manipulator encapsulates both the capability to
interact with the environment irrespective of the material of
the pipeline as well as omnidirectional maneuverability with
high speed, so the aerial manipulator can perform the contact
inspection in a very effective manner.

This paper proposed the methodology of fully autonomous
vision-based control of aerial manipulator for tracking the pipe
structure along with the end effector will be in continuous
contact with the pipe. The manipulator with 3 controllable
joints and 2 compliant joints has been used for uninterrupted
contact. The end effector of the aerial manipulator consists of
a servo-operated gripper with a compliant mechanism to hold
the pipe for uninterrupted contact.



II. RELATED WORK

Continuous contact inspection by aerial manipulators in-
volves the accurate identification localization of objects of
interest in real-time, precise motion control of the aerial plat-
form, and continuous manipulator position control. Nowadays,
The Object identification task is done using deep learning
techniques. Image segmentation is one of the image-processing
techniques that precisely separates an object from its back-
ground and can be used for object identification. There are
some standard image segmentation models like U-Net, Seg-
Net, SqueezeNet, DeepLabv3, and DeepLabv3+ are available
[3H8]]. These models have good segmentation performance
but generally, the model size is large so, these models need
to be modified and reduced a size in such a way that they
can be deployed on edge devices for robotics applications.
In the case of a fast-moving object in the image frame, the
real-time detection and continuous tracking of the object are
difficult using image processing techniques. So, in such cases,
a Kalman filter can be used for object localization and tracking
191, [10].

Precise tracking of horizontal structures by aerial platform
is one of the most important subtasks in continuous contact
inspection by aerial manipulators. Low-altitude tracking is a
challenging task because of the small field of view of the
vision sensor and the high chance of losing objects from
the visual range. In [[L1, [12] horizontal structure tracking by
aerial platform has been described but the interaction with
the environment was not involved with the tracking of the
structure.

For contact inspection, the novel design of multicopter
was proposed in [13]], which includes a study on the celling
effect on the stability of multicopter during an interaction.
However, during contact interaction, inspection over a long
surface cannot be easily achieved by this methodology. In the
beginning, the aerial manipulator idea was proposed for the
pick and place, valve turning, sensor installation, and other
manipulation tasks in [14H17]. Recently, the aerial manipulator
came into the application of contact inspection due to its
ability to interact with the environment and omnidirectional
mobility. In [18], the under-bridge inspection using an aerial
manipulator has been described with force control and a novel
manipulator design with a compliant mechanism. In [19],
the hammering test of the bridge has been performed by an
aerial manipulator. In [20], the force control has been done
using image-based visual servoing with impedance control.
The force control was performed in both static and sliding
conditions but the trajectory of sliding of end-effector was not
controlled. The predefined sliding trajectory of end-effector
has been controlled in [21]. Using a predefined way-point and
motion planner, the indoor experiment has been performed
to track the end-effector desired trajectory. However, the pre-
defined trajectory is not feasible for long outdoor infrastruc-
tures. In [22], the novel aerial manipulator design for NDT
contact inspection has been proposed with eight tilted rotor
configurations. The contact inspection and sliding of the end

effector has been validated in the outdoor conditions but
it’s a semi-autonomous operation. First the contact of the
manipulator’s end effector must be established manually and
maintaining the contact is autonomous in [22]. The continuous
contact interaction along with the pipe structure tracking is
still an unexplored concept which is very useful for performing
continuous contact inspection along the length of the pipe. The
combination of the autonomous tracking of structure by aerial
platform and continuous manipulator position control can lead
us to perform contact inspection on the desired trajectory in
real-time effectively.

In this paper, we have proposed autonomous vision-based
control of aerial manipulator for tracking pipe structure along
with continuous uninterrupted contact by a manipulator. The
major contribution of this work is as follows:

o The design and develop a perception module that contains
a custom-made CNN for semantic segmentation, feature
extraction by classical vision technique, and Kalman filter
for data latency problem.

e The autonomous vision-based control of all DOF of mul-
ticopter has been designed with a sliding mode controller
and validated experimentally.

o The development of a manipulator and its pose control to
maintain uninterrupted contact with pipe using cartesian
coordinates of approximate contact points which has been
derived from the image feature and LIDAR map.

o A fully autonomous operation strategy has been devel-
oped and experimentally validated for organizing the
sequence of sub-tasks to perform autonomous tracking
of the pipe along with maintaining continuous contact of
an end effector with the pipe.

III. OVERARCHING APPROACH
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Fig. 1: Overarching methodology.
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Fig. 2: Convolution neural network

The overarching approach and data flow in the system for
autonomous control of the aerial manipulator is shown in
Fig[l] The aerial manipulator control has been divided into
aerial platform control and manipulator control. The vision
sensor (camera) will fed the real-time images into semantic
segmentation which gives pipe segmented binary image. The
binary image is used for feature extraction. The kalman filter
will use the extracted feature and estimate the feature to
increase the data frequency for vision based control. The
LIDAR will provide LIDAR map that will be superimposed
onto binary image. The camera and LIDAR sensor data has
been fused to extract the cartesian coordinate of approximate
contact point.

The aerial platform’s lateral and yaw motion has been con-
trolled based on the kalman filter data and altitude control uses
the LIDAR data. The manipulator joint parameters controlled
based on the cartesian coordinate of approximate contact point.

IV. PERCEPTION MODULE
A. Deep-learning based image segmentation

The identification of the pipe in the image frame is per-
formed using a Convolution Neural Network (CNN). The
SqueezeNet and DeepLabv3+ are popular CNN architectures
for image segmentation. The DeepLabv3+ included Astrous
Special Pyramid Pooling (ASPP) in the encoder to capture the
multiscale features of the object and special decoder structure
[71,08]. SqueezeNet contains the fire module which helps
to reduce the number of hyperparameters in the model in
an effective manner [[6]. We combined both architectures to
have a small model size with reasonable performance of pipe
segmentation. The model architecture is shown in the Fig. 2a]

The CNN model output will be the binary image in which
the pipe will be segmented as 1 and the background as 0. The
model output is shown in Fig. The CNN model is followed
by the classical vision technique for feature extraction.

The Pipe localization in the image frame is performed by
locating the lateral point and yaw point as shown in Fig. [3
To locate these points on the segmented image, the image
has been sliced into sub-images. On each sub-image, contour
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Fig. 3: Feature extraction.

detection has been implemented to locate the center of each
segment of the pipe.

B. Latency problem in real-time data

The latency problem has inherently come when we have
deployed the image processing with CNN and all the ROS
networks on the edge device (NVIDIA Jetson Nano). To
resolve this issue, we have used semantic segmentation with
3hz frequency and to increase the data frequency for the
controller, the Kalman filter has been used. The Kalman filter
will estimate the image feature when the image feature data
has not been received from the perception module (CNN and
classical vision technique). The Kalman filter algorithm is
implemented with modifications in estimation terms as stated
in the equ 4] We have set the 15hz frequency for the Kalman
filter output that will be used by the vision-based controller.

Xip = AX (1) (1)
Py = APy _)AT +Q 2)
P, HT
K= —"———
(HPy HT + R) ©)
X = Xp + K(Zk — HXyp) + 9(X(k-1) — Zk) (D)
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P, =(I—-KH)Py, (5)

We have modified the estimation term because of latency in
measurement terms. The Kalman filter will help to reduce the
noise in data and it will also avoid the sudden changes in the
image feature.

V. SENSOR INTEGRATION AND TRACKING CONTROL

A. Sensor integration

The integration of the camera and LIDAR sensor is used
to get the cartesian coordinate of the approximate contact
point of the pipe. The position of the camera, LIDAR, and
manipulator on the aerial platform is shown in Fig[5] The
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Fig. 5: Autonomous operation task distribution.

SMNIXe, Ye, Z, 301X, Y1, Z1), D [ X, Yon, Zim) represent the
coordinate frame of the camera, LIDAR, and manipulator
respectively. The coordinate frame of the camera, LIDAR, and
manipulator is defined in such a way that the X-axis of each
frame will be coincident and the Z-axis will be colinear. The
monocular camera can provide 2-D information of the object
in the image frame and LIDAR can generate a depth map in
one plane. The polar coordinate of an object of interest can
be found using a camera and LIDAR as shown in Fig. [f]

(uxtan(HFOV % 0.5)
320 ) (6)

The angular position « of the object (pipe) in the camera frame
can be found using equ [6] Where u and HFOV represent the
lateral position of the object in pixel coordinate and horizontal
field of view respectively. Where u is the lateral position of an
object (pipe) where the LIDAR map intersects on the image
frame and HFOV is horizontal field of view. The LIDAR can
provide depth information r at a particular angular position c.
We assumed that the pipe distance from the aerial platform

a = tan™}(

320 (pixels)

(b) LIDAR map overlap
with HFOV of camera.

(a) HFOV of camera.

Fig. 6: Polar coordinate using camera & LIDAR sensor.

along the Z,, axis would be the same for all points on the
pipe in the image.

We have considered a lateral point as an approximate con-
tact point because it is the closest point where the manipulator
will be in contact with the pipe. The cartesian coordinate (zp,
yp) of the approximate contact point in the manipulator frame
can be calculated using equ. [7] and [§] respectively.

zp = 1 * cos(a) @)
o up * zp
Yp = Fxp ¥

Where the f and p represent the focal length and pixel density
respectively. We have used the camera intrinsic parameter to
calculate the y, because the lateral point will not coincide
with the LIDAR plan. The cartesian coordinate (y,, z,) will
be used for calculating the joint parameter of the manipulator.

B. Tracking control

The vision-based tracking control of the aerial platform
(multicopter) has been employed to have smooth tracking
of pipe. The tracking needs to be performed in such a way
that the pipe will always stay in the reachable space of the
manipulator as well as in the field of view of the camera. The

Yaw point

Lateral point

Fig. 7: Lateral and yaw error in the image frame.

lateral error and yaw error can be found from the extracted
visual feature as shown in Fig. [/| To get the controlled motion
of a multicopter, the sliding mode controller with PI sliding
surface and exponential reaching law have been implemented.
The error of the lateral correction, yaw correction, and depth
correction can be defined as per equ9] [I0] [TT]

€ = U — Uy (9)



Uy — UL

T =tan"(
UV — Uy

(10)

Y

In equ@> the (u;, v;), (uy, vy) are the lateral point coordi-
nate and yaw point coordinate. u; is the image center point
coordinate. In equ. E the 2, and zg are the current pipe depth
and desired pipe depth with respect to the LIDAR frame. The
sliding surface and reaching law can be defined as per equ.

[12] and [I4] respectively.

€, =2p— 24

S:ce+k/edt (12)
S = cé + ke (13)
S = —etanh(S) — k(S) (14)

By equating equ. [I3] and [T4] the sliding mode controller for
velocity in lateral, yaw, and altitude can be derived as equ. [T3]
by incorporating the respective error in the sliding surface.
V= —letanh(S) - 1k(S) - 1e (15)
c c c
The novel continuous forward motion approach is intro-
duced in this work to have smooth tracking while considering
the lateral, altitude, and yaw position of the multicopter with
respect to pipe. The hyperbolic function is used for forward
motion control which is dependent on the lateral correction,
yaw correction, and altitude correction. The forward velocity
function is designed as per equ. [T

A
Vo=—F——"— (16)
f(elvTv €d)
fer, 7, eq) = wie; + wot + wseq + B (17)

In equ. [T6] and [I7] the A, B, w1, and w, are the heuristically
tuned parameter. The max and minimum forward velocity can
be set using A and B. The wi, ws, and ws are the weights
for the lateral error, yaw error, and depth error.

VI. MANIPULATOR’S CONFIGURATION AND INVERSE
KINEMATICS
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Fig. 8: Autonomous operation task distribution.

We have designed and developed a special-purpose manip-
ulator to maintain continuous contact during pipe tracking as

shown in Fig. 8] The manipulator has to maintain the end-
effector’s position on the pipe while pipe tracking. There is a
possibility that the aerial platform may deviate laterally or in
altitude direction so, the manipulator has to compensate this
movement for uninterrupted contact. The gripper orientation
must be down-facing and aligned with the pipe while holding
it.

To maintain the end-effector position on the pipe, we have
introduced 2 controllable joints at the base and it will be
actuated using the cartesian coordinate feedback from the
perception module. The joint parameters can be calculated
from the cartesian coordinate according to equ. [I8] and [T9]

0, = cosil(z—p) (18)
Iy
0, = sin~H(— 22 (19)

Iy x sin(6y)

For the down-facing of the gripper, the free joint has been
incorporated at the end-effector and one compliant joint has
been used for the flexible orientation of the gripper during the
movement of the manipulator base along Y-axis and Z-axis.
One more spring-loaded telescopic joint has been introduced in
the link of a manipulator to absorb shock during pipe tracking.
The feed-forward control has been used to control the 3-servo
angular position.

VII. AUTONOMOUS OPERATION STRATEGY
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Fig. 9: Autonomous operation task distribution.

The fully autonomous operation strategy is designed to
organize the sub-tasks as shown in Fig. 0] to perform a fully
autonomous operation of pipe tracking along with maintaining
continuous contact on the pipe. The fully autonomous oper-
ation has been divided into several actions which have been
descried as follows.

o Reaching action: The aerial manipulator will perform
position control action to reach toward the pipe and it will
maintain an appropriate distance in such a way that the
pipe will come in the reachable space of the manipulator.

o Reachability test: The reachability test provides a close
loop feedback to execute manipulator action. To hold
the pipe, the pipe should be in the reachable space of
a manipulator and in the field of view camera. Fig. [I0]



shows the intersection of the manipulator’s work space
and the field of view of the camera. For the safety

Fig. 10: Reachability test.

of the manipulator as well as aerial platform stability,
the safety zone has been defined by heuristically tuned
thresholds in g, and z, coordinates which are reflected
in the experimental results also.

e Manipulator action: The manipulator will execute con-
trolled joint parameters if the pipe is in the reachable
space. The manipulator action will maintain the gripper
position in such a way that the gripper can hold the pipe.

« Gripper action: The manipulator action will be followed
by the gripper action. The gripper will be opened during
the reaching action and manipulator action. After the
manipulator action, the gripper will hold the pipe.

o Tracking action: To have continuous contact along the
pipe, the aerial manipulator will start the tracking action.
The aerial manipulator will perform the tracking action
along with the continuous manipulator action.

VIII. EXPERIMENTAL RESULTS

Mampulator £
base r

Fig. 11: Validation of vision-based control of manipulator
based on sensor integration.

The vision-based control of the manipulator along with
the perception module is validated before it deploys on the
aerial platform. The manipulator platform was equipped with a
Logitech c-270 camera, RPLIDAR-A1 sensor and for onboard
computation Nvidia Jetson Nano. As shown in Fig. [TT] while
the manipulator base was moving along the Y-axis and Z-axis,
the manipulator’s end effector was maintaining its position on
the using feedback from the perception module.

The experimental validation of autonomous vision-based
control of aerial manipulator has been performed on a 10-
meter long pipe in outdoor conditions. The experiment has
executed an autonomous operation strategy as we have de-
scribed in section . The aerial manipulator is made of a high-
payload capacity multicopter (EFT E616P 16L Agricultural

Fig. 12: Fully autonomous operation of aerial manipulator and
end-effector trajectory.

Drone Hexacopter) and a custom-made manipulator. Fig. [12]
shows the trajectory of the multicopter and end effector. At
the beginning of the operation, the multicopter is manually
set in such a way that the pipe will come in the field of
view of the camera and switch to the autonomous mode. In
autonomous mode, according to the autonomous operation
strategy first of all the reaching action will take place. In
reaching action forward velocity will be zero. When the pipe
is in the reachable space and safe zone the manipulator action
will be executed and it will start maintaining the end effector
position on the pipe. The gripper action will start after the
manipulator action with a small time delay. The tracking action
will start when the gripper grasps the pipe. During tracking
action, the multicopter will start moving forward along with
maintaining a lateral and altitude position. Fig. [I3] and [I4]
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Fig. 13: y, coordinate of the approximate contact point.
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Fig. 14: z, coordinate of the approximate contact point.

show the ¥, and z, coordinates of the approximate contact
point. During the operation lateral position was always in the
safe zone. In the beginning, the z, coordinate was 1.25 m so,
the reaching action has been activated. The reaching action
was active in the time duration of 0 to 6.88s. In reaching



Manipulator action

NN J_,/‘\F_»f'—u"_\_,—

i
|

20 40 60 80 100 120
Time (s)

Fig. 15: 0 variation for manipulator action.

Manipulator action

200

180

160

0, (deg)

140 7
120

100

0 20 40 60 80 100 120
Time (s)

Fig. 16: 6, variation for the manipulator action.

action, the 6,, 05, 03 were at their ideal positions and V,
was zero. The reaching action is followed by the manipulator
action when the pipe comes into the safe zone. The continuous
manipulator action started from 6.88s onwards as shown in Fig
[13] and [T6] During the reaching action and manipulator action
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Fig. 17: 03 variation indicating the gripper action.

the gripper was open from 0 to 8.11s as shown in Fig. [I7]
The manipulator action is followed by the gripper action. The
gripper was closed during the tracking action as shown in the

Fig.
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Fig. 18: Forward velocity of aerial platform.

The aerial platform’s forward velocity and lateral velocity
are shown in Fig.[T8] and[I9] During the reaching action, at the
beginning of the manipulator action and the gripper action the
forward velocity was zero from Os to 10.8s. After the gripper
action, the aerial platform started moving forward according
to equ. [I6] The lateral velocity varies according to the pipe
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Fig. 19: Lateral velocity of aerial platform.

position in the image frame due to external disturbance as
shown in Fig. [I9] The depth velocity varies according to
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Fig. 20: Depth velocity variation.

the z, coordinate of the approximate contact point. In the
beginning, the Aerial platform height was 1.25 meters so,
the depth velocity was high in the negative direction during
the reaching action. The experiment shows that the reaching
action, manipulator action, gripper action, and tracking action
have been executed sequentially according to the autonomous
operation strategy.

IX. CONCLUSION

This paper presents the autonomous vision-based control of
an aerial manipulator for tracking horizontal pipe structures
along with maintaining continuous contact with the pipe. We
have designed a perception module that consists of custom-
made CNN with classical vision technique for pipe identi-
fication along with feature and Kalman filter for increasing
data frequency. The sensor fusion of the camera and LIDAR
is used to extract the cartesian coordinate of an approximate
contact point. The new manipulator has been fabricated along
with the development of its feed-forward position control. The
image feature-based tracking control of the aerial platform is
developed with a sliding mode controller. The autonomous
operation strategy to organize the sub-tasks is developed and
experimentally validated.

The fully autonomous operation has been experimentally
validated in outdoor conditions on the 10-meter-long pipe. The
tracking of the pipe by the aerial platform has been achieved in
a way that the y,,-coordinate and zp-coordinate did not deviate
over +0.2m. During tracking action continuous contact has
been achieved over the pipe which has been validated through
the experimental data. In future work, the force feedback to
ensure the contact and force control to perform contact-based
inspection will be carried out to make the system more useful
and reliable in industrial applications.
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