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Abstract—Urban and industrial environments frequently ne-
cessitate the immediate readiness of firefighting personnel to
address potential fire emergencies, which can lead to a perpetual
shortage of available manpower. To counter this challenge,
we propose an integrated approach to autonomous firefighting
through the utilization of Unmanned Aerial Vehicles (UAVs).
The UAVs serve a dual purpose: providing auxiliary support to
conventional firefighting efforts while simultaneously mitigating
risks to human life. Our proposed methodology incorporates deep
learning-based fire detection. The system combines image feature
analysis with data obtained from distance sensor to establish
Cartesian coordinates of the identified fire sources. Autonomous
vision-based control for multirotor platform is developed, guided
by the extracted image features and Cartesian coordinates.
This system is designed to facilitate both swift deployment and
autonomous operation, while still allowing for manual interven-
tion as necessary. We present experimental validations for the
vision-based control of the multirotor platform under outdoor
conditions. Further tests are conducted to assess the performance
characteristics of the spray subassembly, including spray distance
and flow rate, prior to its deployment on aerial platforms. The
experimental results are discussed for performance analysis of
the approach.

Index Terms—Fire detection, Vision-based control algorithm,
Unmanned Aerial Vehicle(UAV), Robotics and Automation, Au-
tonomous firefighting.

I. INTRODUCTION

Fire-related incidents present substantial threats to busi-
nesses, communities, and operational environments. As rapidly
expanding global economy fuels a dramatic increase in the
construction of high-rise buildings, the world faces a mounting
challenge. Recent history underscores this challenge, as there
have been multiple instances of devastating fires, resulting
in the tragic loss of human lives and valuable property. For
example, on January 26, 2023[1], a major fire engulfed the
22nd floor of a high-rise building in Dadar, Central Mumbai,
subsequently spreading to other parts of the structure. This

Fig. 1. A firefighting multicopter incorporates a visual and distance sensor
with onboard computer leveraging deep learning techniques providing accurate
localisation of fire, enhancing control for effective tracking of fires.

incident serves as a poignant illustration of the risks associated
with high-rise fires. On October 6, 2023[2], a substantial fire
erupted in a building in Mumbai’s Goregaon, claiming at least
eight lives, injuring 40 others, and causing the destruction of
numerous two-wheelers and cars. The severity of these events
underscores the need for innovative firefighting solutions,
particularly in scenarios where the fire site is inaccessible to
conventional firefighting equipment such as fire trucks.

At present, the firefighting landscape is still predominantly
reliant on fire trucks. Fire departments now have introduced
robotic systems to assist firefighters in suppression and control
operations. The utility of UAVs[3] in firefighting operations
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is expanding. While they have predominantly served roles in
real-time surveillance, data collection, thermal and infrared
imaging, and post-fire assessments, notable advancements
have been made. Drones like ”Skydio-X2”[4] provide 360°
site visibility and live thermal imaging, while ”DJI-Mavic2”
and ”Fotokite-Sigma” are deployed for real-time surveillance
at accident sites. Notably, ”Walkera-WK1900” [5]and ”Ehang-
216F” [6] are multicopter engineered with fire-extinguishing
capabilities, allowing them to deploy firefighting agents and
suppress flames effectively.

A. Related work and present contribution

Object detection and visual servoying are commonly used
techniques in automation systems. Many reaserchers have
reported vision based control techniques [7], [8] and object
detection techniques [9], [10]. Accurate tracking of fire is
essential for the UAV to achieve smooth motion during the
extinguishing process. Hence, achieving autonomous fire ex-
tinguishment necessitates precise fire tracking, underscoring
the imperative integration of a robust real-time object de-
tection system within a vision-based control framework and
a proficient spraying mechanism. Autonomous detection of
fire in UAV using Single Shot MultiBox Detector (SSD)
algorithm [9] and vison based control [7] are individually
explored in the literature. However integrating both these
systems with spraying subsystem gives us a unique application
of extinguishing fire in high rise buildings.

We present an integrated architecture built upon a well-
established deep learning model and a feedback controller, our
architecture is adaptable for deployment in any UAV equipped
with an onboard computer, thereby ensuring scalability and
practicality in real-world fire scenarios. To the best of our
knowledge this work is the first to present the fire tracking in
the image plane using onboard computational unit on a UAV.
The paper presents the following sections: ‘Overall Method-
ology,’ explaining the utilized hardware, the object detection
model, communication and control strategy, followed by the
section of ‘Experimental Results and Analysis,’ unveiling the
outcomes of our experiments followed by ‘Conclusion’.

B. Nomenclature

EI
x, EI

y Error in x and y direction in image plane.
EB

x Error in x direction in body frame.
dx Distance by LiDAR in x direction in body frame.
ϕ, θ, ψ Roll, Pitch and Yaw angles of the drone.
V I
x , V I

y Velocity in image plane.
V B
x , V B

y , V B
z Velocity in body frame.

VW
x , VW

y , VW
z Velocity in world frame.

xV , yV Position of fire in Virtual frame.

II. OVERALL METHODOLOGY

The onboard camera continuously captures image frames,
utilizing real-time image processing and object detection tech-
niques, the system identifies the presence of fires in the frames.
Upon fire detection, the vision based control[11] [12] strategy
is engaged to calculate and execute the necessary adjustments

in the multicopter’s position and orientation. The multicopter
autonomously aligns itself with the detected fire’s location,
ensuring optimal proximity for effective fire suppression. The
control algorithm is defined in Fig. 3.

A. Hardware desciption

We have used two platforms to perform experiments, a small
UAV to test the control algorithm and a bigger UAV to test the
spraying. The platform we used for spraying has been chosen
keeping in mind the time required for suppressing and control
operations, if we wish to do the operation using a UAV we
require longer flight time and adequate amount of fire suppres-
sant. We have prepared a subassembly that will be mounted on
our UAV to perform the spraying of fire suppresants. Selection
of subassembly has been done considering various factors
like spray distance, flow rate, operation time, weight of the
subassembly. Pump based subassembly was selected for the
opearation, it comprises of two Hobbywing 8L brushless water
pump, adjustable spray pattern nozzle, EFT 16 L tank, silicon
connecting tubes, carbon fibre base platform for mounting.
Our control test platform comprises a visual sensor, distance
sensor, an onboard computational unit as shown in Fig. 2.

Fig. 2. (a) Control test platform (b) Pump Subassembly (c) Multicopter with
subassembly.

B. Detection using Deep Learning

Classical vision methods traditionally rely on handcrafted
features and engineered algorithms, while deep learning tech-
niques leverage the power of neural networks to automatically
learn hierarchical representations from data. The ability of au-
tonomously extracting relevant features and patterns, enables
enhanced adaptability to complex visual scenarios, making
deep learning a better choice for object detection[13]. For the
detection of fire accurately we are using YOLOv8 [14] object
detection architecture, it is a deep learning model specifically
designed for real-time and high-accuracy object detection
tasks. Most of the datasets available[15] for fire are limited,
they either have images of big fire accidents like gas industry
explosion or very small fire like candles. For our application
we need images of medium size fire in different luminance
conditions. To address this need we created a custom dataset
by taking multiple videos in different luminance conditions
and extracted frames from it, a total of 400 frames were
extracted. We annotated them using ‘labelImg’, following are
the details of annotations.

1) <filename> Image name.
2) <path> Path of the location of image
3) <source> The dataset name and source of image.
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Fig. 3. Control algorithm.

4) <size> Consist of three fields <width>, <height>,
<depth> denoting the width, height and channel number
of image.

5) <name> The class of object. Our class “Fire”.
6) <bndbox> Indicates the position of the object in the

image.

We mixed our custom dataset and dataset of fire accident
and trained the object detection model A total of 1342 images
from different sources were used to train the object detection
model. Samples of the dataset are available in our github
repository[16]. To increase model robustness and generalisa-
tion we have used multiple augmentations [17] like ’Color
Jitter’, ’Random Brightness’, ’Random Sharpen’, which intro-
duces variation in color, contrast, brightness, sharpness. To add
a little blur and smokiness we have used ’Random Fog’ which
introduces blurring with a random fog coefficient and makes it
more robust to smokey conditions. We have reduced the model
filter size by 1/4th at each layer, which reduces the number of
parameters and, in turn, reduces the model size without a sig-
nificant decrease in performance, resulting in faster inference
time. The model was also converted from pytorch (.pth) to
(.onnx) for faster inference and cross platform compatibility.
In light of the inherent computational time required for frame
processing, which resulted in a marginal temporal delay. To
enhance the system’s real-time performance, we adopted a
frame-skip strategy, selectively omitting every second frame
in the input sequence, thereby feeding the model with every
third frame. This strategic adjustment improved the real-time
responsiveness of the system while simultaneously ensuring
the retention of critical data.

C. Communication

The Jetson Nano is the central hub for camera, Lidar, and
Pixhawk integration. The Lidar employs UART communica-
tion, facilitated by a USB to TTL converter and a Python script
for data access. The camera interfaces directly with the Jetson
Nano through USB, utilizing OpenCV for frame retrieval and
forwarding to the object detection model. Pixhawk, responsible
for actuator and sensor coordination, communicates via ROS

using the MAVROS package from PX4. This enables seamless
topic-based communication with sensors and actuators. Com-
munication between sensors, onboard computer and pixhawk
is shown in Fig. 4.

Fig. 4. System overview of sensing and computing components.

D. Vision based Control Strategy

Subsequent to the fire detection model’s identification of fire
within the image frame, we undertake a series of geometric op-
erations. In cases where multiple bounding boxes are detected,
our methodology prioritizes the box with the largest area for
further analyses. Considering that we have prior knowledge of
the image frame’s dimensions, we can determine the centroid
of the image, denoted as (xI ,yI ). Furthermore, following
the acquisition of bounding box coordinates, we proceed to
calculate the centroid of the bounding box, represented as
(xO,yO). The convergence of centroids of image and bounding
box become imperative for accurately aligning the UAV with
fire. The lateral motion in the yB and the altitude control in zB
are intricately guided by the calculated errors between the two
centroids. Transformation between multiple entities is shown
in Fig. 5.

The longitudnal motion, specifically in the xB direction
toward the fire, is modulated by the lateral error. This error, in
turn, is derived from the contrast between the distance deter-
mined through LiDAR measurements and the experimentally
ascertained spray distance. We applied transformation shown
in Fig 6(a), using the current pose angles on the LiDAR data
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Fig. 5. (a) Image frame (b) Body frame (c) World frame.

to correct the error generated due to the pitching of drone for
forward motion.

Similar problem will happen during motion in yB leading
to jerky motion of the UAV due to incorrect error values
fed to the PID controller. Due to this tilt in the image plane
we won’t get the actual coordinates of fire, leading to jerky
motion of the UAV due to incorrect error values fed to the PID
controller. This problem is solved using the transformations of
coordinates of the fire detected in actual frame on the initial
horizontal image frame as shown in Fig 6(b).

Fig. 6. Transformation from Body frame to Virtual frame.

xV = xIcos(ϕ)− yIsin(ϕ) (1)

yV = yIcos(ϕ) + xIsin(ϕ) (2)

Further, simple moving error technique is used to mitigate
abrupt and unwanted fluctuations within the data using un-
weighted mean of ten previous data points. The number ten
was determined experimentally. This ensures smoothed error
value, facilitating precise and responsive control of UAV.

en+1(t) =
1

n

n∑
i=n−9

ei(t) (3)

The refined error data is subsequently input into three distinct
PIDs for controlling vx, vy , vz .

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(4)

The optimal Kp, Ki, Kd are achieved by Ziegler-Nichols
method.

E. Spraying Strategy.

Following the precise alignment of the UAV with the fire
source, spraying subassembly will receive a signal from AUX

PWM output of pixhawk 6c. This signal actuates the com-
mencement of the spraying operation. We can continuously
monitors the area encompassed by the bounding box surround-
ing the fire source, this area serves as a critical indicator of
the fire’s extinguishment status. Currently integration of pump
subassembly with the UAV has been tested manually.

III. EXPERIMENTAL RESULTS AND ANALSYS

A. Object Detection results

In order to confirm the effectiveness of our object detection
model, we subject it to rigorous testing using videos captured
by our UAV under varying luminance conditions. Fig. 7.
showcases a selection of samples from these test scenarios.

Fig. 7. Validation results of the model in different luminance conditions.

The comparison of original error, as obtained from the
object detection node, and the subsequent application of the
moving average technique, is graphically depicted in the Fig
8.

Fig. 8. Comparison of raw error and moving avg error wrt time.

B. Vision based control of the UAV.

To validate a vision strategy and control strategy for UAV
motion control, multiple outdoor experiment has been per-
formed. The real-time path of the UAV from one of the
experiment as it aligns with the fire is demonstrated in Fig. 9.
vBx , vBy and vBz and their corresponding error are recorded

during the experiment as show in the Fig. 10.

C. Spraying after integration with the UAV.

The evaluation of the spraying subassembly’s performance
was carried out manually post its integration with the UAV
platform. Two BLDC motors are connected parallely for
increased flow rate. Current flow rate is 15 L/min. The range
of the spray is 10 m. Flight time of the UAV is 12 min with
10 kg payload. Spraying is shown in Fig. 11.
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Fig. 9. Trajectory of the UAV while correcting the error in yBzB plane.

Fig. 10. Error and velocity of UAV in x,y,z directions.

Fig. 11. Manual spraying on a building by UAV.

IV. CONCLUSION

This work develops a method for the vision-based localiza-
tion and control of a UAV in firefighting situations. Detection
of fire is done using a deep learning technique. Precise 3-D
cartesian coordinates of the centroid of fire is obtained using
onboard sensors, contributing to the localization of fire. A PID
based control strategy is developed for continuous tracking of
fire and also maintaining a particular distance from the fire for
ensuring accurate spraying. Additionally, the performance of
the spraying subassembly has been independently verified. In
our forthcoming research endeavors, we aim to delve into the

assessment of fire intensity and prioritize multiple identified
fires accordingly. Additionally, we will estimate the requisite
time for extinguishment and required quantity of extinguishing
material. Subsequent to these analyses, we intend to enhance
and refine our control strategy in alignment with the acquired
insights.
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